top of page
![](https://static.wixstatic.com/media/11062b_808b40c463104f22943c284c625d31c3f000.jpg/v1/fill/w_1920,h_1080,al_c,q_90,enc_avif,quality_auto/11062b_808b40c463104f22943c284c625d31c3f000.jpg)
![](https://static.wixstatic.com/media/11062b_dadf974a47664e5cb42f939b7f17bec8f000.jpg/v1/fill/w_750,h_422,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/11062b_dadf974a47664e5cb42f939b7f17bec8f000.jpg)
Nicole M, Maddie B, Jordan, Shelly, Maddie G, Emma, Nora
Interval and Radius of Convergence
Example #1
![](https://static.wixstatic.com/media/7440ab_1e798978223745fea5b2946bae9fd5d7~mv2.gif)
Similar to the Ratio Test, plug in the sigma notation into the Ratio Test General Formula.
![](https://static.wixstatic.com/media/7440ab_1f34258a83874e1aa37c7160323dd2b0~mv2.gif)
Expand.
Cancel out the repetitive parts.
Factor out the parentheses in the numerator. Take the limit.
Using 'Principle of Dominance', the limit of the problem is 2. Ultimately, we achieve 2|4x-8|.
![](https://static.wixstatic.com/media/7440ab_11e0b0aa31224bab9b376ccafc59aa76~mv2.gif/v1/fill/w_372,h_68,al_c,pstr/7440ab_11e0b0aa31224bab9b376ccafc59aa76~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_b28a55a877df430383925dbc7abfc4df~mv2.gif/v1/fill/w_590,h_113,al_c,pstr/7440ab_b28a55a877df430383925dbc7abfc4df~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_1221daf35ca54521b63b136554c383fa~mv2.gif/v1/fill/w_136,h_113,al_c,pstr/7440ab_1221daf35ca54521b63b136554c383fa~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_b4a4e15a43bd40e39a2d6e2aa273997c~mv2.gif/v1/fill/w_53,h_24,al_c,pstr/7440ab_b4a4e15a43bd40e39a2d6e2aa273997c~mv2.gif)
The Radius of Convergence is found by placing the answer (2|4x-8|) into an inequality constrained from (-1,1) and solving for until there is no coefficient for 'x'.
Revised Constraints
Proof of Convergence/Divergence of the Revised Constraints
![](https://static.wixstatic.com/media/7440ab_1f1fb40d6cdc4e85ba528cf92a0a550c~mv2.gif/v1/fill/w_61,h_49,al_c,pstr/7440ab_1f1fb40d6cdc4e85ba528cf92a0a550c~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_587b9d62d3d64cd5907cc67382245259~mv2.gif/v1/fill/w_292,h_216,al_c,pstr/7440ab_587b9d62d3d64cd5907cc67382245259~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_a7721483d1c04176b32f336d8cde22dd~mv2.gif/v1/fill/w_63,h_49,al_c,pstr/7440ab_a7721483d1c04176b32f336d8cde22dd~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_e26f4df4c8e24add96eb127de7136ab8~mv2.gif/v1/fill/w_275,h_204,al_c,pstr/7440ab_e26f4df4c8e24add96eb127de7136ab8~mv2.gif)
![](https://static.wixstatic.com/media/7440ab_233827a8970c49be8b750aa4bdea5bcc~mv2.png/v1/fill/w_96,h_59,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/7440ab_233827a8970c49be8b750aa4bdea5bcc~mv2.png)
Interval of Convergence is found when the Revised Constraints are discovered. In order to determine between a bracket [ , ] or parentheses ( , ), first determine whether each value converges/diverges. If the value converges (when plugged back into the original sigma notation), use a bracket. If the value diverges (when plugged back into the original sigma notation), use parentheses.
Therefore, '15/8' converges and '17/8' diverges.
bottom of page